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Source of stem cells in the body

Somatic (“adult”) stem cells are found in many organs

Bone marrow

Pancreas
Muscle Skin
Amniotic fluid Dental pulp
Amnion
Brain
Intestine
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What makes stem cells pluripotent?

* Receptors on their surface, that make stem cells responsive
to signals from their environment (the niche)

* Low level expression of genes normally expressed in many
different specific cell types (e.g., bone, fat, neurons, muscle, cartilage,
etc)

* How genes are packaged in the cell nucleus

— active genes: 'open’ configuration (accessible)
— inactive genes: 'closed’ configuration (inaccessible)

— inactive genes with a potential for activation:’open’ configuration,

but with a ’brake on’

{ Epigenetics

Lecture outline

 Introduction to epigenetics

* What provides embryonic stem cells with
pluripotent differentiation capacity?

* What about epigenetic states in somatic
(adult) stem cells?
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Adapted from Jane Qiu, Nature 441, 143-1.

Epigenetics

Heritable modifications of DNA or
chromatin that affect gene function,
but not DNA sequence.

Two main components:

* DNA methylation

 Post-translational modifications of
histones

DNA methylation is implicated in:
Development

X chromosome inactivation

Genomic imprinting

Cancer: silencing of tumor suppressors
- Long-term gene silencing
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Proposed mechanism
by which DNA methylation
leads to gene
repression

A few facts about DNA methylation
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A few facts about DNA methylation
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« DNMT1: maintenance methyltransferase; recognizes hemimethylated DNA
after replication; ensures fidelity of methylation in daughter cells after cell

division

« DNMT3a: de novo methyltransferase (embryo development, differentiation)
« DNMT3b: de novo methyltransferase (embryo development, differentiation)
«  DNMT2: no known DNA methyltransferase activity; methylates RNA?

A few facts about DNA methylation

Effect of DNA methylation on promoter activity depends on the density of
CpGs in the promoter

Promoter classification based on CpG representation
(Weber et al., 2007. Nat. Genet.)
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A few facts about DNA methylation

Effect of DNA methylation on promoter activity depends on the number and
density of CpGs in the promoter

High CpG TP TT PP TP PYPP—  ONor OFF
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Low CpG ¢ Q Q— ON or OFF
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CpG promoter
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Epigenetics

Heritable modifications of DNA or
chromatin that affect gene function,
but not DNA sequence.

Two main components:

* DNA methylation

e Post-translational modifications
of histones
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Combinations of histone tail modifications

make up a’code’
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Polycomb group proteins (PcG) are key regulators of

cell-fate decisions
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Role in chromatin condensation and promoter inactivation
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Post-translational modifications of histones

+ Acetylation Methylation +/-
H3K4, H3K36, H3K79
H3K9, H3K27, H4K20

Core histone.\';
- SUMOylation ™ ‘U™ phosphorylation +?
Antigonizes Ac, Ub T
Ubiquitination +

H2AK119, H2BK120
"Wedging” effect?

(+/- : effect on gene expression)

Lecture outline

 Introduction to epigenetics

 What provides embryonic stem cells
with pluripotent differentiation
capacity?

* What about epigenetic states in somatic
(adult) stem cells?
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DNA methylation in ES cells

¢ Overall less DNA methylation than in differentiated cells

* But not all genes are unmethylated!
Pluripotency Genes

O Unmethylated CpG ml:imumkcepingsenes Needed now
@ Methylated CpG HCP
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- Changes in DNA methylation during ES Cell

differentiation into neurons

Differentiation
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Methylated genes:

* Pluripotency

* Embryonic development
* Germline development

DNA methylation
(log, IP/input)

ES cell —" NP~ Neuron

DNA methylation changes correlate
with commitment to a progenitor
state, when ES cells lose
pluripotency

Mohn et al., 2008. Mol Cell




A few facts about chromatin in ES cells

A looser and more dynamic chromatin organization than in
differentiated cells

* Overall less DNA methylation than in differentiated cells

* Only one histone H1 molecule per 2 nucleosomes —
loosening of chromatin? . ;

» ES cell chromatin is "hyperdynamic”: histones are more
mobile (not as tightly bound to DNA)

» Genes important for development & differentiation are
temporarily "poised” — primed for activation, or repression

Linking DNA methylation & histone modifications

in embryonic stem cells

Specific combinations of DNA methylation and histone
modifications mark distinct functional classes of genes
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Lecture outline

 Introduction to epigenetics

» What provides embryonic stem cells with
pluripotent differentiation capacity?

 What about epigenetic states in
somatic (adult) stem cells?

Functional attributions of methylated and

unmethylated promoters in MSCs
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Gl Promoter CpG methylation confers repression, but
lack of or weak methylation is not predictive
Iﬁ Lineage-specific differentiation
ICPILCP Transcription regulation
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Combinatorial association of DNA methylation and

histone modifications on promoters
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Sgrensen et al., 2010. Mol. Biol. Cell
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Differentiation segregates the H3K4me3 and
H3K27me3 marks
@ Hakames
@ rames | [ Tores
. H3iomes —* Weakly expressed
@ Methyic |
Non-methyl-C
Activation ; . Repression
A
Other repressive ~ ~S@
combinations
LA

In conclusion...

&t Promoter DNA methylation only partly contributes to gene expression
potential in stem cells
Hypermethylation predicts pathway exclusion
Hypomethylation is permissive but not a predictor of differentiation

i Arepressed, but permissive epigenetic state on lineage-specific
promoters is established by a combination of 'repressing’ and
"activating’ marks on a hypomethylated DNA background
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Repressed active Active
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DNA methylation
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Regulatory levels of gene expression and cell fate

decisions ('molecular layers’)
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